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Abstract

The surface displacements and contact stress induced by rigid inclusions between two dissimilar elastic
half-spaces are considered. Previous studies limited to flat rigid inclusions have revealed that the contact
stress on opposite sides of the inclusions are identical and that the surface displacements of the two half-
spaces are proportional. The solution is rederived here in a simple fashion by using the Boussinesq solution,
and the conclusions of previous studies are generalized to non-flat rigid inclusions. © 1999 Elsevier Science
Ltd. All rights reserved.

In a recent paper Gladwell (1995) considered the problem of a rigid inclusion of uniform
thickness and arbitrary planform compressed between two dissimilar, isotropic, linear elastic half-
spaces. He formulated this problem in terms of the elastic displacement using the Papkovich—
Neuber representation (Gladwell, 1980), and with extensive manipulations had shown that :

(1) the surface displacements of the two half-spaces u., and u., are related by
911/121 = 821/{22 (1)

where 9, is an elastic constant related to the shear modulus u; and Poisson’s ratio v, by
9= p/(1=v);

(ii) the contact stress on either side of the inclusion are identical ;

(iii) the normal displacements in the region where the half-spaces are in contact are not only equal,
but are separately zero.

These conclusions were also observed by Selvadurai (1994) who analyzed the problem for an
axisymmetrical rigid inclusion of constant thickness (disk).

It will be shown that these three conclusions may be deduced in a much simpler fashion by using
the Boussinesq solution for the surface displacements of an elastic half-space due to surface
tractions (Johnson, 1985). Moreover, it will be shown that within the context of linear elasticity,
these conclusions hold for any finite number of rigid inclusions of general shape. The shape of the
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inclusions is assumed to maintain a specific symmetry as explained in the following, but is otherwise
arbitrary.

Let the position of a point in an elastic half-space be given by a Cartesian coordinate system
where the z axis measures the distance from the surface. The normal displacement of the surface
due to a normal force is given by (Johnson, 1985)

P(x',y) 1

(e =5 5 @

where P is the magnitude of the force and r = \/ (x—x")*+ (y—)")* is the distance from the point
of action of the force. When a normal compressive stress o(x, y) is applied to the surface of the
half-space, the normal surface displacement is given by the Boussinesq solution

Lo o
u(x,y) =4 J o, dydy (€)

Consider the well-posed problem of two identical half-spaces pressed together by a compressive
stress 0.. = —a,, at z — + oo, with a finite number of rigid inclusions positioned between them
(Fig. 1). The elastic half-spaces are isotropic and linear elastic. They have an elastic modulus
9 = 3, and have smooth surfaces (i.e., frictionless and cohesionless). The inclusions are of arbitrary
planform and are symmetric with respect to the midplane z = 0. The distance /,(x, y) from the
midplane to the lower surface of the inclusions, and the distance /,(x, y) from the midplane to the
upper surface are prescribed by

hi(x,y) = f(x, ), (4a)
hy(x,p) = I (x, ). (4b)

Fig. 1. Rigid inclusions between two identical elastic half-spaces.
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To be consistent with Gladwell’s notation, the surface displacement of each half-space is positive
in its respective inward direction. The solution of this problem is symmetric and therefore the
normal stress g,(x, y) and normal displacement u.,(x, y) are identical at opposite points of the two
surfaces. Moreover, the normal surface displacements are non-negative so that the two half-spaces
do not overlap. Tensile normal stress is not possible so that the inclusions are not necessarily in
full contact with the half-spaces. However, this does not affect the symmetry or the uniqueness of
the solution. The normal surface displacement of either half-space may be described by the
Boussinesq solution in the form

1 ” ” O-('xlay/)_aoo , ,
uz(x,y)=gf f T gy )

1) d—w r

where the reference term — o, ensures that the surface displacement vanishes far away from the
inclusions.

The surface stress o,(x, y) of the previous problem is now applied to two dissimilar elastic half
spaces with elastic moduli 3, and 3,, respectively. The normal surface displacement of the first
half-space is given by eqn (5) while the normal surface displacement of the second half-space is
given by

9
U (X, y) = g, (x, ). (6)

Uniqueness of the solution in linear elasticity ensures that the surface stress o, and displacements
u.,, U.,, are also the solution of the following equivalent problem. The two dissimilar half-spaces
are pressed together by a compressive stress .. = —o,, at z — + oo, with a finite number of rigid
inclusions positioned between them (Fig. 2). The inclusions are of arbitrary planform and the
distances from the midplane to their surfaces are proportional. Specifically, the distance 4,(x, y)

BRI

G;;,=—0

Fig. 2. Rigid inclusions between two dissimilar elastic half-spaces.
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from the midplane z = 0 to the lower surface of the inclusions, and the distance 4,(x, y) from the
midplane to the upper surface are prescribed by

hl(xay) =f(xay)a (73)
9
hZ(xvy) ZSTZf(xay) (7b)

Therefore, if the thickness of the inclusions satisfies the proportionality rule (7), then the three
conclusions of Gladwell (1995) and Selvadurai (1994) must hold for rigid inclusions with uniform
thickness. Within the context of linear elasticity where the stress is applied to the initial con-
figuration with no reference to the current configuration, the three conclusions must also hold for
rigid inclusions with varying thickness. Notice that the surfaces are smooth (i.e., frictionless and
cohesionless) and therefore tensile normal stress at the surfaces is not possible. This means that
the inclusions are not necessarily in full contact with the half-spaces and separation may occur.
However, this does not affect the proportional symmetry of the surface displacements. The deter-
mination of inclusion thickness profiles that preclude such separation and the dependence of these
thickness profiles on the inclusion planform remains an open problem.
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